Magnetic source localization via linearly constrained minimum variance spatial filtering

نویسنده

  • B. Van Veen
چکیده

Spatial filtering has a long history of successful application in radar and sonar problems (e.g. [1,2]). The process of spatial filtering is also known as beamforming, since early spatial filters were designed to form pencil beams for either receiving or transmitting signals. More recently, spatial filtering has been applied to EEG and MEG [3–6, 8] to localize intracranial sources of electrical activity and to eliminate noise and interference from the recorded time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming.

We present a tumor localization method for diffuse optical tomography using linearly constrained minimum variance (LCMV) beamforming. Beamforming is a spatial filtering technique where signals from certain directions can be enhanced while noise and interference from other directions are suppressed. In our method, we tessellate the domain into small voxels and regard each voxel as a possible pos...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

Source Localization of Brain Electrical Activity via Time-frequency Linearly Constrained Minimum Variance Method

The locations of active brain areas can be estimated from the surface recordings. We describe the localization of the sources of the brain electrical activity via spatial filtering. This method incorporates the time-frequency characteristics of the neural sources for its location. The estimation of the location of active brain area is done in non-parametric fashion. The spatial filters are impl...

متن کامل

Functional magnetic resonance inverse imaging of human visuomotor systems using eigenspace linearly constrained minimum amplitude (eLCMA) beamformer

Recently proposed dynamic magnetic resonance (MR) inverse imaging (InI) is a novel parallel imaging reconstruction technique capable of improving the temporal resolution of blood-oxygen level-dependent (BOLD) contrast functional MRI (fMRI) to the order of milliseconds at the cost of moderate spatial resolution. Volumetric InI reconstructs spatial information from projection data by solving ill-...

متن کامل

Overcomplete Independent Component Analysis via Linearly Constrained Minimum Variance Spatial Filtering

Independent Component Analysis (ICA) designed for complete bases is used in a variety of applications with great success, despite the often questionable assumption of having N sensors and M sources with NQM. In this article, we assume a source model with more sources than sensors (M>N), only L<N of which are assumed to have a non-Gaussian distribution. We argue that this is a realistic source m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001